Monthly Archives: March 2017

By 2050, the ocean is expected to contain more plastic than fish

Plastic soup

Plastics and plastic packaging are an integral and important part of the global economy. Plastics production has surged over the past 50 years, from 15 million tonnes in 1964 to 311 million tonnes in 2014, and is expected to double again over the next 20 years, as plastics come to serve increasingly many applications. Plastic packaging, the focus of this report, is and will remain the largest application; currently, packaging represents 26% of the total volume of plastics used. Plastic packaging not only delivers direct economic benefits, but can also contribute to increased levels of resource productivity – for instance, plastic packaging can reduce food waste by extending shelf life and can reduce fuel consumption for transportation by bringing packaging weight down.

While delivering many benefits, the current plastics economy also has important drawbacks that are becoming more apparent by the day. Today, 95% of plastic packaging material value, or $80–120 billion annually, is lost to the economy after a short first use. More than 40 years after the launch of the first universal recycling symbol, only 14% of plastic packaging is collected for recycling. When additional value losses in sorting and reprocessing are factored in, only 5% of material value is retained for a subsequent use. Plastics that do get recycled are mostly recycled into lower-value applications that are not again recyclable after use. The recycling rate for plastics in general is even lower than for plastic packaging, and both are far below the global recycling rates for paper (58%) and iron and steel (70–90%). In addition, plastic packaging is almost exclusively single-use, especially in business-to-consumer applications.

Plastic packaging generates significant negative externalities, conservatively valued by UNEP at $40 billion and expected to increase with strong volume growth in a business-as-usual scenario. Each year, at least 8 million tonnes of plastics leak into the ocean – which
is equivalent to dumping the contents of one garbage truck into the ocean every minute. If no action is taken, this is expected to increase to two per minute by 2030 and four per minute by 2050. Estimates suggest that plastic packaging represents the major share of this leakage. The best research currently available estimates that there are over 150 million tonnes of plastics in the ocean today. In a business-as-usual scenario, the ocean is expected to contain 1 tonne of plastic for every 3 tonnes of fish by 2025, and by 2050, more plastics than fish (by weight).

Sea Otter chewing on discarded cookie package; Sea turtle ingesting plastic bag.

The production of plastics draws on fossil feedstocks, with a significant carbon impact that will become even more significant with the projected surge in consumption. Over 90% of plastics produced are derived from virgin fossil feedstocks. This represents, for all plastics (not just plastic packaging), about 6% of global oil consumption, which is equivalent to the oil consumption of the global aviation sector. If the current strong growth of plastics usage continues as expected, the plastics sector will account for 20% of total oil consumption and 15% of the global annual carbon budget by 2050 (this is the budget that must be adhered to in order to achieve the internationally accepted goal to remain below a 2°C increase in global warming).  Even though plastics can bring resource efficiency gains during use, these figures show that it is crucial to address the greenhouse gas impact of plastics production and afteruse treatment.

Plastics often contain a complex blend of chemical substances, of which some raise concerns about potential adverse effects on human health and the environment. While scientific evidence on the exact implications is not always conclusive, especially due to the difficulty of assessing complex long-term exposure and compounding effects, there are sufficient indications that warrant further research and accelerated action.

Many innovations and improvement efforts show potential, but to date these have proved to be too fragmented and uncoordinated to have impact at scale. Today’s plastics economy is highly fragmented. The lack of standards and coordination across the value chain has allowed a proliferation of materials, formats, labelling, collection schemes and sorting and reprocessing systems, which collectively hamper the development of effective markets. Innovation is also fragmented. The development and introduction of new packaging materials and formats across global supply and distribution chains is happening far faster than and is largely disconnected from the development and deployment of corresponding after-use systems and infrastructure. At the same time, hundreds, if not thousands, of small-scale local initiatives are launched each year, focused on areas such as improving collection schemes and installing new sorting and reprocessing technologies. Other issues, such as the fragmented development and adoption of labelling standards, hinder public understanding and create confusion.

In overcoming these drawbacks, an opportunity beckons: using the plastics innovation engine to move the industry into a positive spiral of value capture, stronger economics and better environmental outcomes.

Featured image: Blue Planet II on BBC

 

SOURCE:

The New Plastics Economy: Rethinking the future of plastics, page 7

World Economic Forum, January 2016

 

SEE ALSO:  15-Year Study Indicates Huge Increase in Pacific Ocean Microplastics

Advertisements

Researchers race to find the source of microplastics choking the world’s oceans

Groundbreaking research into one of the world’s most complex pollution problems is underway at B.C. labs

Scientists are growing increasingly concerned about microplastics in water and in the food chain, but they face some daunting challenges in the race to uncover the sources of the problem.

“We’re encountering a pollutant unlike any pollutant we’ve ever seen before,” says Dr. Peter Ross, director of ocean pollution research at the Vancouver Aquarium. “This is not a chemical pollutant, it’s a structural pollutant.”

Recent samples his team have taken off the B.C. coast contained up to 25,000 plastic particles and fibres in just one cubic metre of water.

Yes, some of it comes from plastic bags, foam packaging, cigarette butts and other remnants of the millions of tonnes of plastic debris slowly breaking down in the world’s oceans.

But there are some surprising sources, too, like laundry.

“A single sweater could release as much as 10,000 particles of microplastic fibres,” said Ross.

“That’s getting into the wastewater stream, and you have a million or two million people doing such laundry — it adds up.”

Sewage treatment plants may hold answers

But no one knows yet how washing your favourite fleece jacket fits into the bigger picture.

To find out, Ross is working with sewage treatment plants to measure the number and types of fibres in the water coming in, and later sampling the treated water as it flows out into the Fraser River to compare.

What they find could lead to changes in filtering techniques at treatment plants.

Water sampling is also being done out in the open ocean, revealing a mix of fibres and other microplastics, defined as anything smaller than five millimetres in size.

It’s a global issue, so everyone has an interest in reducing the amount of plastic being added to the world’s waterways. One estimate puts it at the equivalent of a garbage truckload every minute. At this rate, by 2050 there will be more plastic in the ocean than fish.

To home in on the problem, technicians at the Vancouver Aquarium lab recently began using a $325,000 infrared spectrometer like the kind usually found in crime labs.

It can identify the type of plastic from tiny samples.

‘It’s not going to give us the exact fingerprint,” says Ross. “It won’t say ‘Walmart fleece made in China,’ but it will confirm it is plastic, give us the category, tell us about additives and sometimes actually a manufacturer.”

. . .

Featured image:

This water sample taken by researchers in B.C.’s Strait of Georgia contained an average of 3,200 plastic particles per cubic metre of ocean. Other samples off Vancouver contained up to 25,000 particles. (Vancouver Aquarium)

READ FULL ARTICLE:

B.C. researchers race to find the source of microplastics choking the world’s oceans

By Greg Rasmussen, CBC NEWS, March 11, 2017

http://www.cbc.ca/news/canada/british-columbia/bc-microplastics-research-1.4017502

 

‘Extraordinary’ levels of pollutants found in the world’s deepest ocean trenches

Presence of man-made chemicals in most remote place on planet shows nowhere is safe from human impact, say scientists.

Scientists have discovered “extraordinary” levels of toxic pollution in the most remote and inaccessible place on the planet – the 10km deep Mariana trench in the Pacific Ocean.

Small crustaceans that live in the pitch-black waters of the trench, captured by a robotic submarine, were contaminated with 50 times more toxic chemicals than crabs that survive in heavily polluted rivers in China.

“We still think of the deep ocean as being this remote and pristine realm, safe from human impact, but our research shows that, sadly, this could not be further from the truth,” said Alan Jamieson of Newcastle University in the UK, who led the research.

“The fact that we found such extraordinary levels of these pollutants really brings home the long-term, devastating impact that mankind is having on the planet,” he said.

Jamieson’s team identified two key types of severely toxic industrial chemicals that were banned in the late 1970s, but do not break down in the environment, known as persistent organic pollutants (POPs). These chemicals have previously been found at high levels in Inuit people in the Canadian Arctic and in killer whales and dolphins in western Europe.

The research, published in the journal Nature Ecology and Evolution, suggests that the POPs infiltrate the deepest parts of the oceans as dead animals and particles of plastic fall downwards. POPs accumulate in fat and are therefore concentrated in creatures up the food chain. They are also water-repellent and so stick to plastic waste.

He said it was not unexpected that some POPs would be found in the deepest parts of the oceans: “When it gets down into the trenches, there is nowhere else for it to go. The surprise was just how high the levels were – the contamination in the animals was sky high.”

  

Left: A container of Spam rests at 4,947 meters on the slopes of a canyon leading to the Sirena Deep in the Mariana trench. Photograph: Noaa Office of Ocean Exploration

‘Right: Contamination was sky high’: two commensal amphipods on a sponge stalk in the Mariana trench. A commensal ophiuroid is seen at the top of the image. Photograph: NOAA Office of Ocean Exploration

. . . The results are both significant and disturbing, said the marine ecologist Katherine Dafforn at the University of New South Wales in Australia and not part of the research team: “The trenches are many miles away from any industrial source and suggests that the delivery of these pollutants occurs over long distances despite regulation since the 1970s.

“We still know more about the surface of the moon than that of the ocean floor,” Dafforn said. She said the new research showed that the deep ocean trenches are not as isolated as people imagine. “Jamieson’s team has provided clear evidence that the deep ocean, rather than being remote, is highly connected to surface waters. Their findings are crucial for future monitoring and management of these unique environments.”

POPs cause a wide range of damage to life, particularly harming reproductive success. Jamieson is now assessing the impact on the hardy trench creatures, which survive water pressures equivalent to balancing a tonne weight on a fingertip and temperatures of just 1C.

He is also examining the deep sea animals for evidence of plastic pollution, feared to be widespread in the oceans, which has been the focus of much recent attention, leading to bans on plastic microbeads in cosmetics in the UK and US. “I reckon it will be there,” he said. . . .

READ FULL ARTICLE and see more pictures and live feed at:

‘Extraordinary’ levels of pollutants found in 10km deep Mariana trench

By Damian Carrington, The Guardian

March 13, 2017

https://www.theguardian.com/environment/2017/feb/13/extraordinary-levels-of-toxic-pollution-found-in-10km-deep-mariana-trench

SEE ALSO:

Image: Hirondellea gigas 2: The ultra-deepwater amphipod Hirondellea gigas from the deepest depths of the Mariana Trench in the Northwest Pacific Ocean.  Photo: Dr. Alan Jamieson, Newcastle University

. . . The researchers, from the University of Aberdeen and the James Hutton Institute in the U.K., focused on two specific types of chemical pollutants: polychlorinated biphenyls, or PCBs, and polybrominated diphenyl ethers, or PBDEs, both of which may cause a variety of adverse health effects, including neurological, immune and reproductive issues and even cancer (in humans). PCBs were once commonly used in electrical equipment before being banned over health and environmental concerns in the 1970s. The manufacture and import of PBDEs, which are typically used as flame retardants, has also been restricted in the U.S., although at least one common type of the chemical is still permitted.

Despite the reductions in their use, both PCBs and and PBDEs can still be detected in marine organisms today. Both have the potential to remain intact for long periods of time, often binding to other particles in the water that can then carry them throughout the ocean. They also have a tendency to “bioaccumulate,” meaning they can build up in marine organisms over time. Just last year, a study conducted by researchers from the Scripps Institution of Oceanography suggested that certain organic pollutants, including PCBs and PBDEs, are widespread in fish throughout the world.

For the new study, the researchers checked for the presence of these chemicals in two of the world’s deepest ocean trenches — the Mariana trench in the Western Pacific, near the Mariana islands, and the Kermadec trench north of New Zealand.  To do so, the researchers deployed special devices called “deep-sea landers,” which are small vessels that are released from ships and drop to the bottom of the ocean before floating back up to the surface.

Each lander was equipped with special traps designed to catch tiny shrimp-like crustaceans called amphipods known to inhabit some of the ocean’s deepest and most extreme environments. Afterwards, the researchers tested the amphipods for the presence of PCBs and PBDEs.

They found that both PCBs and PBDEs were present in all species of amphipod in both trenches, and at all depths sampled — up to 10,000 metres deep in both locations. . .

READ FULL ARTICLE AT:

‘No longer pristine’: Not even the world’s deepest ocean trenches are free of pollution, scientists discover

By Chelsea Harvey, Washington Post, February 14, 2017

‘No longer pristine’: Not even the world’s deepest ocean trenches are free of pollution, scientists discover

SEE ALSO:

Banned chemicals from the 70s found in the deepest reaches of the ocean

The University of Aberdeen, February 14, 2017

http://www.abdn.ac.uk/news/10409/

Rapid growth in acidity in the Arctic ocean linked to climate change

The Arctic is suffering so many consequences related to climate change, it’s hard to know where to begin anymore. It’s warming more rapidly than almost any other part of the planet; its glaciers are melting and its sea ice is retreating; and its most iconic wildlife, including polar bears and walruses, are suffering.

But that’s not all — a new study, just out Monday in the journal Nature Climate Change, indicates that the Arctic Ocean is also becoming more acidic, another consequence caused by greenhouse gases in the atmosphere. It’s a process that occurs when carbon dioxide dissolves out of the air and into the sea, lowering the water’s pH in the process.

Scientists believe acidification is occurring at varying rates all over the world. But this week’s study gives researchers renewed cause to worry about the Arctic, suggesting that a large — and increasing — swath of the ocean may have reached a level that’s dangerous for some marine organisms.

The new research focuses on the water concentrations of a mineral called aragonite, which is a form of calcium carbonate, a chemical compound that plankton, shellfish and even deep-sea corals use to build their hard outer shells. When ocean water becomes more acidic, chemical reactions occur that impede the formation of calcium carbonate and lower its concentration in the water, which can be a major threat for these marine animals.

These aragonite levels are a “very important parameter” which can be an indicator of how much carbon dioxide is dissolving into the sea, according to Liqi Chen, a scientist with China’s State Oceanic Administration and a co-author on the new study.

By analyzing data collected from the ocean during expeditions between 1994 and 2010, the scientists have found that some parts of the western Arctic Ocean are undersaturated with aragonite — in other words, their concentrations are lower than they could be. And these areas have expanded more than sixfold since the 1990s.

. . . “Models indicate that sea ice will continue to decrease and the prediction is that the Arctic Ocean may be ice-free in the summer by 2030,” they write. If this occurs, their projections suggest that the entire surface of the Arctic Ocean, up to about 30 meters deep, may be undersaturated with aragonite within two decades. And given the rate of expansion they’ve observed since 1994, they suggest that the entire western Arctic Ocean — up to 250 meters deep — could also become undersaturated within a few decades. . .

Featured Image: Ice floes in Baffin Bay above the Arctic Circle, seen from the Canadian Coast Guard icebreaker Louis S. St-Laurent, in July 2008. (Jonathan Hayward/Canadian Press via AP)

READ FULL ARTICLE at:

Scientists just measured a rapid growth in acidity in the Arctic ocean, linked to climate change

February 27, 2017

Nigerians Are Building Eco-Friendly Homes With Plastic Bottles And Mud

These colorful homes are bulletproof, fireproof, and can withstand earthquakes. They also maintain a comfortable temperature, produce zero carbon emissions, and are powered by solar and methane gas from recycled waste.

Plastic is everywhere. In fact, the environment is so riddled with it, researchers predict that 99% of all birds on this planet will have plastic in their gut by the year 2050.

It is not enough to persuade people to use less, plastic needs to be repurposed and reused to be kept out of landfills. Despite informative infographics, emotional statistics, and recycling programs, many nations – especially the United States – continue to toss plastics into landfills without much care.

This unfortunate reality has spurred many to get creative with the discarded byproducts of society. Some have used plastic waste to construct marvelous sculptures and raise awareness about the issue, while others are repurposing it entirely to construct eco-friendly homes.

As phys.org reports, the housing crisis has become so bad in Nigeria, nearly 16 million units are required to address the shortage. Because crafting traditional homes would be far too expensive for most, locals adopted the idea put forth by two NGOs and are now building plastic bottle homes.

   

The solution not only cuts costs for building a house, it is beneficial for the environment.

Founded by Kaduna-based NGO Development Association for Renewable Energies (DARE), with help from London-based NGO Africa Community Trust, the project is solving two problems at once by addressing the homelessness issue and helping the environment. Not only will there be less plastic in landfills, the house is designed to produce zero carbon emissions.

In addition, it is completely powered by solar panels and methane gas from recycled human and animal waste.

To create a two-bedroom bottle house, workers fill plastic bottles with sand and then hold them together using mud and cement. This forms a solid wall that is stronger than cinder blocks.

That’s not all: These colorful homes are bulletproof, fireproof and can withstand earthquakes. They can also hold a comfortable temperature year round.

The buildings can be built to three stories, but no higher, due to the weight of the sand-filled bottles. And, of course, the magnificent diversity of recycled bottles give each house a unique and bright look.

A two-bedroom house requires 14,000 bottles to complete. To put this into perspective, Nigeria throws away three million bottles every day. Clearly, there are plenty of bottles which can be repurposed to build every individual in their own abode.

See FULL ARTICLE and more pictures at:

Nigerians Are Building Fireproof, Bulletproof, And Eco-Friendly Homes With Plastic Bottles And Mud

Source: www.trueactivist.com | Original Post Date: November 2, 2015

http://collectivelyconscious.net/articles/nigerians-are-building-fireproof-bulletproof-and-eco-friendly-homes-with-plastic-bottles-and-mud/